import urllib.parse import hashlib import hmac import base64 import requests import time import xlwings,pandas # for excel sheets. pandas reads it, xlwings writes it; not sure if xlwings is needed anymore but pandas requires a few modules to be installed -pip install pandas[excel] import io from dotenv import load_dotenv import os load_dotenv() # binance.us api url api_url = "https://api.binance.us" # get binanceus signature def get_binanceus_signature(data, secret): postdata = urllib.parse.urlencode(data) message = postdata.encode() byte_key = bytes(secret, 'UTF-8') mac = hmac.new(byte_key, message, hashlib.sha256).hexdigest() return mac # Attaches auth headers and returns results of a POST request def binanceus_request_key(uri_path, data, api_key, api_sec): headers = {} headers['X-MBX-APIKEY'] = api_key signature = get_binanceus_signature(data, api_sec) params={ **data, "signature": signature, } req = requests.get((api_url + uri_path), params=params, headers=headers) return req.text def binanceus_request(uri_path): req = requests.get((api_url + uri_path)) return req.text # create a file named '.env' with the below keys like so: BINANCE_API_KEY="mysuperlongbinancekey" api_key = os.environ.get("BINANCE_API_KEY") secret_key = os.environ.get("BINANCE_SECRET_KEY") # uri_path = "/api/v3/ticker/price" # URI NO KEY initial api link doesn't require auth, 2 columns simple data # uri_path = "/api/v3/openOrders" # get all open orders uri_path = "/sapi/v1/capital/config/getall" # asset fees and wallet status get all data_time_stamp = { "timestamp": int(round(time.time() * 1000)) } # here we pull the data # result = binanceus_request(uri_path) # URI NO KEY result = binanceus_request_key(uri_path, data_time_stamp, api_key, secret_key) print("Reading JSON data into DataFrame...") df_nested = pandas.read_json(io.StringIO(result)) # this works, don't use wrong uri_path # df_nested = pandas.DataFrame.from_dict(result, orient='columns') # dictionary example doesn't work with json data print("DataFrame created successfully.") # print (df_nested) # to prove it works (176 rows x 14 columns) # Check the shape of the DataFrame print("DataFrame shape:", df_nested.shape) # will show if it's a dataframe or not i reckon # print(df_nested.dtypes) # print(df_nested) out_path = "S:\\Documents\\prodigy\\Coding-Programming\\Repos\\python-scripts\\Scripts\\api-testing\\" # windows needs double \\ escape the escape try: # wb = xlwings.Book('binance.xlsx').sheets('BinanceWallet') # Method 1; file name and sheet page # wb.range('a1').options(pandas.DataFrame, index=False).value = pandas.DataFrame(df_nested) # works using URI NO KEY dataset, have to have file open # df_nested.to_excel(out_path + 'binance.xlsx', sheet_name='BinanceWallet', index=False) # Method 2; creates new file with sheet name, will delete current document and replace be careful with pandas.ExcelWriter(out_path + 'binance.xlsx', mode="a", engine="openpyxl", if_sheet_exists="replace") as writer: # Method 3(best); mode="a" means append df_nested.to_excel(writer, sheet_name="BinanceWallet") # has more options that actually work, still need to pip install openpyxl though print(out_path + 'binance.xlsx') print("Excel Sheet written successfully") except Exception as e: print(f"Error: {e}")